Membrane-perturbing properties of two Arg-rich paddle domains from voltage-gated sensors in the KvAP and HsapBK K(+) channels.

نویسندگان

  • Sofia Unnerståle
  • Fatemeh Madani
  • Astrid Gräslund
  • Lena Mäler
چکیده

Voltage-gated K(+) channels are gated by displacement of basic residues located in the S4 helix that together with a part of the S3 helix, S3b, forms a "paddle" domain, whose position is altered by changes in the membrane potential modulating the open probability of the channel. Here, interactions between two paddle domains, KvAPp from the K(v) channel from Aeropyrum pernix and HsapBKp from the BK channel from Homo sapiens, and membrane models have been studied by spectroscopy. We show that both paddle domains induce calcein leakage in large unilamellar vesicles, and we suggest that this leakage represents a general thinning of the bilayer, making movement of the whole paddle domain plausible. The fact that HsapBKp induces more leakage than KvAPp may be explained by the presence of a Trp residue in HsapBKp. Trp residues generally promote localization to the hydrophilic-hydrophobic interface and disturb tight packing. In magnetically aligned bicelles, KvAPp increases the level of order along the whole acyl chain, while HsapBKp affects the morphology, also indicating that KvAPp adapts more to the lipid environment. Nuclear magnetic resonance (NMR) relaxation measurements for HsapBKp show that overall the sequence has anisotropic motions. The S4 helix is well-structured with restricted local motion, while the turn between S4 and S3b is more flexible and undergoes slow local motion. Our results indicate that the calcein leakage is related to the flexibility in this turn region. A possibility by which HsapBKp can undergo structural transitions is also shown by relaxation NMR, which may be important for the gating mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Surprising Clarification of the Mechanism of Ion-channel Voltage-Gating

An intense controversy has surrounded the mechanism of voltage-gating in ion channels. We interpreted the two leading models of voltage-gating with respect to the thermodynamic energetics of membrane insertion of the voltage-sensing ‘module’ from a comprehensive set of potassium channels. KvAP is an archaeal voltage-gated potassium channel whose x-ray structure was the basis for determining the...

متن کامل

Models of the structure and voltage-gating mechanism of the shaker K+ channel.

In the preceding, accompanying article, we present models of the structure and voltage-dependent gating mechanism of the KvAP bacterial K+ channel that are based on three types of evidence: crystal structures of portions of the KvAP protein, theoretical modeling criteria for membrane proteins, and biophysical studies of the properties of native and mutated voltage-gated channels. Most of the la...

متن کامل

Calibrated Measurement of Gating-Charge Arginine Displacement in the KvAP Voltage-Dependent K+ Channel

Voltage-dependent ion channels open and conduct ions in response to changes in cell-membrane voltage. The voltage sensitivity of these channels arises from the motion of charged arginine residues located on the S4 helices of the channel's voltage sensors. In KvAP, a prokaryotic voltage-dependent K+ channel, the S4 helix forms part of a helical hairpin structure, the voltage-sensor paddle. We ha...

متن کامل

Specificity of Charge-carrying Residues in the Voltage Sensor of Potassium Channels

Positively charged voltage sensors of sodium and potassium channels are driven outward through the membrane's electric field upon depolarization. This movement is coupled to channel opening. A recent model based on studies of the KvAP channel proposes that the positively charged voltage sensor, christened the "voltage-sensor paddle", is a peripheral domain that shuttles its charged cargo throug...

متن کامل

A voltage-sensor water pore.

Voltage-sensor (VS) domains cause the pore of voltage-gated ion channels to open and close in response to changes in transmembrane potential. Recent experimental studies suggest that VS domains are independent structural units. This independence is revealed dramatically by a voltage-dependent proton-selective channel (Hv), which has a sequence homologous to the VS domains of voltage-gated potas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 51 19  شماره 

صفحات  -

تاریخ انتشار 2012